Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
iScience ; 25(11): 104993, 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2082224

ABSTRACT

The MetaSUB Consortium, founded in 2015, is a global consortium with an interdisciplinary team of clinicians, scientists, bioinformaticians, engineers, and designers, with members from more than 100 countries across the globe. This network has continually collected samples from urban and rural sites including subways and transit systems, sewage systems, hospitals, and other environmental sampling. These collections have been ongoing since 2015 and have continued when possible, even throughout the COVID-19 pandemic. The consortium has optimized their workflow for the collection, isolation, and sequencing of DNA and RNA collected from these various sites and processing them for metagenomics analysis, including the identification of SARS-CoV-2 and its variants. Here, the Consortium describes its foundations, and its ongoing work to expand on this network and to focus its scope on the mapping, annotation, and prediction of emerging pathogens, mapping microbial evolution and antibiotic resistance, and the discovery of novel organisms and biosynthetic gene clusters.

2.
J Biomol Tech ; 32(3): 228-275, 2021 09.
Article in English | MEDLINE | ID: covidwho-1687373

ABSTRACT

As the second year of the COVID-19 pandemic begins, it remains clear that a massive increase in the ability to test for SARS-CoV-2 infections in a myriad of settings is critical to controlling the pandemic and to preparing for future outbreaks. The current gold standard for molecular diagnostics is the polymerase chain reaction (PCR), but the extraordinary and unmet demand for testing in a variety of environments means that both complementary and supplementary testing solutions are still needed. This review highlights the role that loop-mediated isothermal amplification (LAMP) has had in filling this global testing need, providing a faster and easier means of testing, and what it can do for future applications, pathogens, and the preparation for future outbreaks. This review describes the current state of the art for research of LAMP-based SARS-CoV-2 testing, as well as its implications for other pathogens and testing. The authors represent the global LAMP (gLAMP) Consortium, an international research collective, which has regularly met to share their experiences on LAMP deployment and best practices; sections are devoted to all aspects of LAMP testing, including preanalytic sample processing, target amplification, and amplicon detection, then the hardware and software required for deployment are discussed, and finally, a summary of the current regulatory landscape is provided. Included as well are a series of first-person accounts of LAMP method development and deployment. The final discussion section provides the reader with a distillation of the most validated testing methods and their paths to implementation. This review also aims to provide practical information and insight for a range of audiences: for a research audience, to help accelerate research through sharing of best practices; for an implementation audience, to help get testing up and running quickly; and for a public health, clinical, and policy audience, to help convey the breadth of the effect that LAMP methods have to offer.


Subject(s)
COVID-19 , Nucleic Acid Amplification Techniques , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Humans , Molecular Diagnostic Techniques , Pandemics , RNA, Viral , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL